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Geronimus has shown that a sequencc of orthogonal polynomials {p,) with
periodic recurrence coefficients for n > n, is orthogonal on a set of disjoint intervals
E;=U!_, [ay_1., ay] with respect to a distribution of the form

)= [~ [] G aVip. (] d + dutx),

where p,(x)=TT'_, (x—w,) with sgnp,(x})—(=1)"""/ on (ay_,, a,) for j=

1, .., 1, v=/—1, and where u is a certain point measure with supp(u}< {w,, ... w, }.
In this paper we show (in fact a more general result is presented) that a sequence
of polynomials (p,) orthogonal with respect to dyy has recurrence coefficients of
period N, N>/, for n>n,, if and only if there exists a so-called Chebyshev polyno-
mial 7, of degree N on E,, where a polynomial 7, is called a Chebyshev polyno-
mial on E, if [7,,] attains its maximum value on E, at N4/ points from £,
Furthermore it is demonstrated how to get in a simple way a (nonlinear) recurrence
relation for the recurrence coefficients of the orthogonal polynomials. Resuits on
Chebyshev polynomials on several intervals are also given.  © 1991 Academic Press, Inc.

1. INTRODUCTION AND NOTATION

First let us note that the notation will be the same as in [16] which will
be referred to as I. The references to the equalities and sections in I will be
made by prefix 1, e.g., (I.3.1) means equality (3.1) in [. On the other hand,
(3.1) means equality (3.1) of this paper.

Henceforth let N={1,2,3,..} and No={0,1,2, ..}, [eN, g, R for
k=1,.,2La,<a,< .-+ <a, and put

E,= U L2 —1,axn] H(x)= H {(x—a;)
k=1 k=1

123
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and

1h(x) = {g—l)l—f/n VIHX)  for xel(ay_,,ay),j=1,..1 1)

elsewhere.

R and S are real polynomials with leading coefficient one and dR=r and
dS =5 (r+s=2I) which satisfy the relation

R(x) S(x)= H(x).

As usual, dp denotes the exact degree of the polynomial p, p, denotes a real
polynomial with dp, =v which has no zero in"E,, ie.,

pux)=c [] (x—we)™,

where ce R\{0}, v¥e Ny, v,eNfork=1,.,v*v=3"" v, w, € C\E, for
k=1,..,v* and the w/s are real or appear in pairs of complex conjugate
numbers. Furthermore set

Py k(X)=p,(x)/(x —w,)* for k=1, .., v

In what follows we choose always that branch of \/ﬁ which is analytic on
C\E, and which satisfies

!
sgn /H(y)=sgn || (y—an_,) for yeR\E,. (12)
k=

1

For given R,p,,e=(&;,..,&x), &c€{—1,1}, let us now define the
following linear functionals on the space of real polynomials P

v _ =1
LR,p‘,,s(p):z a 8k)< PR ) (we) for peP, (1.3)

S =D, JH
and
R
Paplp)=[popditLe,, () for peP  (14)

where it is assumed that ¢, { = ¢, if w, and w, ., are complex conjugate,
here g’ denotes the jth derivative of g. If there is no possible confusion
indices v resp. R, p,, ¢ are omitted. The unique sequence of orthogonal
polynomials (p,),cn,» 2i,=X"+ ---, ip=0, satisfying

W (X9 )=0  for j=0,.. i, —2
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and

q]R,pv, e(xinﬂ B lpi,,) 5& 0

have been investigated by the author in [16]. If ¥, . is definite, ie., if
i,=n for ne Ny, then it is well known (see, e.g., [3]) that the polynomials
Pn, neNy, satisfy a recurrence relation of the form

pn(x)=(x—an)pn—l(x)-—)“npn72(x} for I’lEN, (15}

where p_ =0, po=1, a,€R, and 4,,,€R\{0} for neN.

In this paper we study orthogonal polynomials with periodic recurrence
coefficients, ie., polynomials p, which satisfy a recurrence relation of the
form (1.5) and the recurrence coefficients of which satisfy the periodic
conditions

Entnt2=0yy2 and AN+n+2=}'n+2 for n>n0’

where NeN and n,eN.

Geronimus [7] (see, e.g, [5]) has shown, under the additional assump-
tion that ,,;€R™* for neN, that such polynomials are orthogonal with
respect to a positive definite linear functional ¥ , ., where /< N (corre-
sponding results for orthogonal polynomials with asymptotically pericdic
recurrence coefficients have been given recently by Geronimo and Van
Assche [5]). Thus the question arises whether polynomials orthogonal
with respect to ¥, , . have periodic recurrence coefficients. For the case

that
~H
YupeP)=| P dx

£y IPI

for peP,

where sgn p= —sgn % on int(E;), A. Magnus [10, Sect. 4.2] has shown,
based on results of Nuttall and Singh [12], that the recurrence coefficients
have periodic or quasi-periodic behaviour, where this fact is explained by
special Abel functions the periods and amplitudes of which depend only on
E,. Examples show (see also [14]) that in general periodicity of the
recurrence coefficients can not be expected if E, consists of more than one
interval. In the single interval case it is well known by the results of
Bernstein and Szegé [18] that the recurrence coefficients are constant for
n>v and thus have period one. In this paper we demonstrate that polyno-
mials which are orthogonal with respect to ¥, ., ¥, . definite, have
recurrence coefficients of period N if and only if there exists a Chebyshev
polynomial (abbreviated T-polynomial), Jy=x"+ --- on E, where &
polynomial 9, = x” + -.-is called a T-polynomial on E, if |7, /| attains its
maximum value at N+/ points in E,. Moreover we have, taking info
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consideration Geronimus’s result, that the existence of a system of
orthogonal polynomials with periodic recurrence coefficients and spectrum
E,, up to a finite point spectrum, is equivalent to the existence of a
T-polynomial on E,.

We proceed as follows: In the second section we characterize T-polyno-
mials on disjoint intervals and give some basic properties of such polyno-
mials. In the third section we demonstrate the above mentioned result on
the periodicity of the recurrence coefficients. In the fourth section we
investigate the connection between the recurrence coefficients of the poly-
nomials orthogonal with respect to ¥ , ., resp. ¥, , _.. Special attention
is given to the interesting case where the recurrence coefficients are sym-
metric periodic. In the fifth section we show how to get in a very simple
way recurrence relations for the recurrence coefficients if the period is
greater than the number of the intervals. Using completely different
methods these recurrence relations for the recurrence coefficients were
derived by Turchi et al. in [19].

Finally we would like to mention that polynomials with periodic
recurrence coefficients appear also in the papers of Kac and Van Moer-
beke [9] and Van Moerbeke [11] where periodic Jacobi matrices are
investigated and the connection of such matrices resp. of orthogonal poly-
nomials having periodic recurrence coefficients with periodic Toda lattices
is demonstrated.

As it was brought to our attention by the referee the question of
periodicity resp. asymptotic periodicity of the recurrence coefficients was
also investigated by Aptekarev [21, see in particular Sect. 3]. Based on
Widom’s asymptotic formulas for polynomials orthogonal on a system of
contours, see [20], he demonstrated that a sequence of polynomials (p,)
orthogonal with respect to a positive measure u has asymptotically periodic
recurrence coefficients of period N if the spectrum of u consists of N
disjoint intervals [ay_,, ay], j=1, .., N, of equal harmonic measure at co
{(which is equivalent to the fact that there exists a T-polynomial of degree
Non Ey=U7_, [ay_;,ay]) and of finitely many discrete values and that
the absolutely continuous part of the measure y satisfies a generalized
Szego condition on E,. Furthermore a necessary condition which is close
to the above stated sufficient condition is given.

2. CHEBYSHEV POLYNOMIALS ON DISJOINT INTERVALS

DeriniTiON 2.1, Let /, Ne N and suppose that N > We call a polyno-
mial Jp(x)=x"+ .--, NeN, a Chebyshev polynomial (abbreviated
T-polynomial) on E,, if 7 is of the form

T Mx)=H(x) U3 _ (x)+ L7, (1)
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where %, _, is a polynomial of degree N — / with leading coefficient one and
LeR™. (x)=Jy(x)/L is called a normed T-polynomial on E,.

Let us note that %, _, and L from (2.1) are uniquely determined and that
it follows from (2.1), since H<(>)0 on E,(R\E)), that

<L for xe k|,
7,
| N(")\{>L for xeR\E,

We have chosen the name “T-polynomial” because it turns out in this
section that polynomials satisfying (2.1) have a similar behaviour on £, as
the well known Chebyshev polynomials on [ —1, +1]. T-polynomials on
two disjoint intervals have been investigated by Achieser [1] and then by
the author [14, 15]. The reason why we are interested in 7-polynomials in
this paper is, as we shall demonstrate in the next section, that there is an
equivalence between the existence of a 7-polynomial on E, and the
periodicity of the recurrence coefficients of the polynomials orthogonal
with respect to functionals of the type ¥, ..

First let us characterize T-polynomials with the help of an orthogonality
property and let us show how to determine algebraically those disjoint
intervals E, on which there exists a T-polynomial.

THEOREM 2.1. (a) Jy is a T-polynomial on E, if and only if
Iy L Py on E, with respect to 1/h. (P, denotes as usual the set of real
polynomials of degree at most n.)

(b) There exists a T-polynomial T on E, if and only if

My gk Myye—1 " My
Mytk+1 My pe =00 Mpyy

. . =0 for k=0,..,1-2,
Moy Monir—1 70 My

where

dx
. k
mk—le ——h(x) for keN,.

Proof. (a) Applying Theorem L1 resp. Theorem 1.3 to relation (2.1)
part (a) follows.

(b) We give only a sketch of the proof since the methods are similar
to those used in [17, pp. 428-429]. Necessity. Put

Tulx)= Y fx"
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Then it follows by (a)

N N\ dx
ka<zl3,-x”—f> =0 for k=0, ,N+I-2 (22)
5 5 h(x)

and hence

N
Y Bmy ;=0 for k=0,.,N+I1-2
=0

which is the assertion.
Sufficiency. Let for sufficiently small |x|

N—-1 7 anN-—1
Dito %X

— 2N
SN B )-
j=0Fj j=0

m_y . ;x7+0(x

Since the determinants given in (b) are zero for k=0, .., /-2 it follows
that

Ay_1_x=0 for k=0,..,[-2
and thus, recalling that by Lemma I.1(c), m;=0 for j=0, ..,/ -2,

N
Zﬁij‘*'k*j:O for k=0,...,N+l—2,

j=0
which is equivalent to (2.2). Hence, by (a), the theorem is proved. ||

Notation. As usual let T, resp. U,,neN,, denote the Chebyshev
polynomials of degree » of first resp. second kind on [ -1, +17.
Furthermore, if J, is a T-polynomial on E,, we put for neN

Ton=TuT) and Tow=L"T 2" ' =x"N+ ..., (2.3)
and
@nzvfl:@N—lUn—ﬁij) and Uy =L"Upp_ /2" =x"V""+

(2.4)
where %, _,=%Uy_,/L and %, _, is defined in (2.1).
If ¢ is a polynomial we use also the notation
i(x) := t(x)/K, where K is the leading coefficient of 1.
LemMa 2.1. Let Iy be a T-polynomial on E,. Then for ne N
Tow—HU =1, (2.5)

i.e., the polynomials 7, ,,ne N, are T-polynomials on E,.
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Proof.  Using the well known relation

TXx)— (x>~ 1) U2_ (x)=1

n—1
we get with the help of (2.1) that
(T(TN) = H Uy~ U, (TP =1
which is the assertion. J

The following corollary shows that knowing a 7-polynomial on £; we
know an infinite subsequence of polynomials orthogonal with respect to
distributions of the type p/k dx, 1/ph dx + point measure, ¥ etc.

R,pi-1, 8

COROLLARY 2.1. Let Ty be a T-polynomial on E, and let p be a polyno-
mial of degree at most [ — 1 which has no zero in int(E,). Then the following
propositions hold:

(a) For eachneN, T,y L P,y ;, , on E; with respect to p/h.
(b) For eachneN, U,y ;L P s, » on E; with respect to ph.

{c) Let o be a point measure such that the support of ¢ is a subset of
the set of zeros of p. Then for each neN, pT,n L Py, 5, on E, with
respect to 1/hp dx + do.

(d) Let o as in (c). Then for each neN, p%,n_, L P,n_, on E, with
respect to hfp dx + do.

Proof. Since by (2.5) and Theorem I1(a) resp. Theorem Li(b),
Iow L Puni_osresp. Uy, L P,y_, with respect to 1/h resp. £ on E, the
corollary follows immediately. J

Remark 2.1.  As we have learned quite recently orthogonal polynomials
(p,) with the property that p,y=r.(7y) and p_ = p,_rY (Fy) for all
ne N, where (r,) is a sequence of orthogonal polynomials the spectrum of
which is contained in [ 1, +1], »{") | denotes the associated polynomials
of order one, and p,_, is a polynomial of degree /— 1 which has exactly
one zero in [ay, ay,,],j=1,.,1—1, have been studied in [6] The
normed 7-polynomial J,, on E, is called there polynomial mapping. But let
us note that in general polynomials orthogonal with respect to ¥, , .
resp. with respect to the more general functional ¥, , , do not fit into this
class of orthogonal polynomials because of the following results: Let 7, be
a T-polynomial on E, and let p,_,(x)=T[].} (x—w,) be such that
Wi € [ao, @oe 4 1] for k=1, .., {— 1. Furthermore let (p,) be a sequence of

orthogonal polynomials with the property that p,y=r.(y) and pl}) | =

011Uy A FN)=p1_ Uy, for all neN, where r, is such that () =
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_y for neN. Then one gets from [6, (2.17) and (2.14)] or by direct
methods that (p") is orthogonal with respect to /—H/r|p,_,| dx+
St e 8(x —wy) on E,;, where the point measure i, at w, is, up to very
special cases, different from that one defined in (1.3). More precisely it can
be demonstrated that equality of the two point measures can only occur if
Taw, 1_g)=c; for j=0,1,., [(I-1)/2] and Iy(w, )= —c, for j=
1,2, .., [(I—-1)/2] where cl,cze[l ). For example, if r,=T,,neN,
then y, = — \/_ H(w,)/p;_ (w,) and thus the point measure differs from that
one given in (1.3) by the factor 2. Hence only in the case where p,_, has
all zeros at boundary points of E,, ie., \/fl(wk) =0, fork=1,..,I—1, one
obtains a distribution of the type treated in this paper (see Section 4),
namely the distribution \/ — R(x)/S(x) dx where JR=1[+ 1(I—1) and 4S =
[—1(I+1). Finally let us mention that distributions of the form
< —R(x)/8(x)/p(Tx(x)) dx, where p is a polynomial which is positive on
[—1, +1], are the only other distributions which fit also into that class of
orthogonal polynomials investigated in [6, compare Remark 77].

COROLLARY 2.2. Let Iy be a T-polynomial on E,. Then

(@) F,yresp. Uyy_;, neN, has nN resp. nN — | simple zeros in int(E)).

(b) There is a unigue r,_,€P,_, which has exactly one zero in each
interval (ay;, ay 1), j=1, .., [— 1, such that for each ne N

T on=nNr;_U,n_, and 2oNr,_ Ton=2HU \p_,+ H' U, _,.
(¢} For neN

[ Tanl2) — Tnlx) dx
%an(Z)—jEI . x h(x)

and

j (HU,y_ )2) — (HU,y_ )(x) dx

T z—x h(x)’

Proof. (a) Follows immediately from Theorem 1 and Lemma L5.

(b) Let n=1. Since, by (a), %, _, has all zeros in int(E,) and since,
by (2.1), F has a local extremum at the zeros of %, _, it follows that

g’;v':er—l%N—l? Where rlfleP[_l-
Observing that

Tulay)=Tlay.,) for j=1,.,1—1,
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we get that % -and thus r,_, has at least one zero in each interval
(ay, ay . 1), j=1, .., [—1, which gives the first relation for # = 1. Differen-
tiating 7,y it follows immediately that the first relation holds for each
neM.

The second relation follows by differentiating (2.5} and using the first
relation.

(c) Follows immediately from Theorem [.1. §

THEOREM 2.2. (a) Jy=x"+ --- is a T-polynomial on E, if and only if
there exist exactly N+1 points y,€E;, y,<y,< -+ <Ywyy, such that
[Ty )| =max, g | Tp(x)| for j=1,. ., N+I.

(b} Each polynomial Ty =x"+ -.-with N simple real zeros is a
T-polynomial on the set of intervals E(u)= {xeR :|Ty(x)| <u}, where
pe (0, K] and K :=min{[Ty(x)|: T y(x)=0}.

{(c) Suppose that Ty, resp. T %, is a T-polynomial on E, resp. E}} with
aft = —1 and a%,= 1. Then the composition ﬂzNz(i'Nl) is a normed T-poly-
nomial on a set of disjoint intervals E}**.

Proof. (a) Necessity, From relation (2.1) it follows that

[Tn(p)l = max [ Tn(x)l

at the N4/ zeros y; of H%y _,. Assuming that there is an additional point
y*eE, y* no zero of H%y_,, such that [Fy(y*)|=max, g [Tn(x)|
we get that y*eint(E,) and thus 7 ,(y*)=0, which implies by
Corollary 2.2(b) that 7, has at least N zeros which is a contradiction.

Sufficiency. Since 7 has at most N — 1 zeros it follows that |.7,| attains
its maximum at all boundary points of £,. Hence

N+l N1
.]_[ (x_yj)zH(x) ﬂ (X—)/JM)
and
N—1
T =H) [ (= 3,)7+ L2
p=1

where L =max, ., |Zy(x)|, which proves the sufficiency part.
(b) and (c¢) Follow immediately with the help of (a).

CoRrOLLARY 2.3. Let Fy be a T-polynomial on E,. Then

(a) Fy is the unique minimal polynomial on E, with respect to the
maximum norm; i.e., Iy deviates least from zero on E; with respect to the
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maximum norm among all polynomials of degree N with leading coefficient
one.

(b) Let E, be a set of disjoint intervals with the properties that
E, c E, and that E, contains at least N+ 1 alternation points of Iy, ie., at
least N+1 points §,<P,< - <Fny1, J;€Ep, such that Ty(3;)=
(=N '~ max, g | Tn(x)| for j=1,.,N+1. Then Jy is a minimal
polynomial on E,. and there exists no T-polynomial of degree N on E,.

Proof. (a) From Theorem 2.2(a) we deduce that there exist N+ 1
points y;, € E;, y;, < ¥, < -+ < Vjy,p such that

Tu(y)= (=¥ " #max |Ip(x)]  for p=1.,N+1L
xe Ey

The assertion follows now by the well known alternation and uniqueness
theorem for compact sets.

(b) From the Alternation Theorem it follows that J, is a minimal
polynomial on E,. In view of the uniqueness of the minimal polynomial
and in view of part (a), (b) follows. ||

Remark 2.2. Since by the well known Alternation Theorem a polyno-
mial of degree N with leading coefficient one is a minimal polynomial on
E, with respect to the maximum norm if and only if it has N + 1 alternation
points on E; we conclude by Theorem 2.2(a) that a minimal polynomial
need not be a T-polynomial on E,. But it is not hard to demonstrate that
each minimal polynomial on E, is a T-polynomial on a set of /' disjoint
intervals including E,.

In what follows the next theorem is of great importance.

THEOREM 2.3. Let I be a T-polynomial on E, and assume that there is
no T-polynomial on E, of lower degree. Then the polynomials 7, neN, are
the only T-polynomials on E,.

Proof. In view of Corollary 2.3(a) there are no other T-polynomials on
E, of degree nN, neN.

Now assume that there is a T-polynomial 7,,, (n— 1) N<m<nN,n=?2,
on E;. Then we obtain with the help of Lemma 1.6, Section 5, that

(%%N'_H@mAI%nNAI)Z_H(g’zm@nN—l_H%N@mfl)z =1

and that t,n_,,:=7,Tw—H¥,_U,n_, is a polynomial of degree
nN—m<N. Hence ¢,,_,, is a T-polynomial on E, of degree less than N
which is a contradiction. [

The next corollary shows the connection with certain elliptic resp.
hyperelliptic integrals.
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COROLLARY 24. Let Fy be a T-polynomial on E, with exactly
(v;+1),v,€N, extremal points in (ay_ , ay), j=1, .., I, and let r; | be that
polynomial defined in Corollary 2.2(b). Then

J‘abﬂﬂ‘—l-—(iz—dx:o fOF j:l,...,l_l

@y {H(x)]
and

@ |r,_y(x)] VT .
———dx = or j=1,..,1L
LZJ-I [H(x)I N for.

Proof. Let y(x)=T p(x). Then it follows from (2.1) and Corollary 2.2
that y satisfies the differential equation

r?-1 (y’)z /

NH y—1 '

2.6)

Solving this differential equation on [ay;, a,,, ], je {1, ..,/—1}, by using
the facts that | y|> 1, y(ay)=y(a, )= 11, and sgny'=sgnr, Uy ,,
we get that y is of the form

ri_ (1)

VI1H(1)

Since y{a,;) = yl{ay ,,)= *1 the first relation follows.
Solving (2.6) for xe [¢,, t,] < E,, where ¢, t, denotes two consecutive
extremal values of y, we get that

y{x)= =+ cosh (N r dt) for xelay, ay,,]
ay

arc COS(iY(X))=Nr |7 1()

n /1 H(1)]

ke N, from which it follows, since y(¢,) = —y(t,)= F 1, that

dt + 2k,

CJIHG) N

which gives the assertion. |

f’z Ol 7

THEOREM 2.4. Suppose that there exists a normed T-polynomial
G N —
I n#F Ty on ;j_, [ay_, ay), where —1=a,<a,<a;<a;<as< -~ <
ary_1<ayy=1 and Ty has no zero on \J}_, (ay,_1, ay,). Then each inter-
val [ay_y,ay], j=2,.., N—1, contains at most one zero of Uy_, and the
boundary intervals [ — 1, a,] and [a,n_, 1] contain no zero of Uy _,.
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Proof. Let e {—1,1}. Since, using the facts that |Ty|<1 and that
Fua)=(—1""7for j=1, .., 2N,

J
(=1 sgn(Fy—6Ty)a,)=0  for j=1,..,2N,

it follows immediately by Rolle’s Theorem that F, — 3T has at least one
zero in each interval [ay_,, a5, j=1,., N.

Now suppose to the contrary that there is an i* e {2, ..., N— 1} such that
Iw:= [ayx_y, ay«] contains more than one zero of Uy _,. Let us recall
that at the zeros y,<y,< - <yy_, of Uy_Ty(y;)=(—1)""7 for
j=1 ., N

Case (1). I« contains at least three zeros y,<y,, <V,,2, VE
{1, .., N—3}, of Uy_,. Considering 7, — 8T at these y,’s and using the
fact that |J,|<1 on int(I.) we get again by Rolle’s Theorem that
Fy— 8Ty has at least one zero in [y,,y,.,) and (y,, 1, Vvral.

Case (2). I contains exactly two zeros y, <y, ., ve {l,.., N=2}, of
Uy_ ;. Choosing ¢ such that

sgn Ta(agm 1) =3 sgn Tyl p,)
we get, since

Sgn(ﬁv =0T y)(ay~_)sgn ﬁN(aZi* _1)=0

and
—osgn Tr(y,) Sgn(ﬁN_ oTy\)(y,)>0,

that 9, — 6Ty has at least one zero in [a,~_,, y,). Analogously one
demonstrates that 5 — 8T has at least one zero in (y,, dy=].

In both cases there is a de {—1, +1} such that J, — Ty has at least
two zeros in [a,x« g, ay+] and, as it was demonstrated above, at least one
zero in each interval [a,;_ 4, a5], je {1, .., N}\{i*}, and thus N+ 1 zeros
which implies that , = T which is a contradiction. §

Next let us give another characterization of T-polynomials.

THEOREM 2.5. The following propositions are equivalent:

(a) There exists a T-polynomial Ty on E,.
(b) There are polynomials H*, H—, U™, U~ with leading coefficient
one such that
H*(xyH (x)=H(x), sgn H¥(x)=+1 on E, 2.7)
and
(In=)H " (U*Y—L=H (% ) +1L,
where LeR™*,
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(¢) There are polynomials %™*, H*, H ™ with leading coefficient one,
such that H*, H™ satisfy condition (2.7) and %~ LPsy- ., , o0 E, with
respect to H* [h.

(d) There are polynomials % ~, H*, H~ with leading coefficient one,
such that H*, H™ satisfy condition (2.7) and %~ LPsy- ., » on E, with
respect to H ™ [h.

Proof. (a)=(b). Let
H*(x)=T] (x—af) and 2*(x)=T] (x—y*),

where a; € {ay, .., ay} and y;" eint(E,) denotes that extremal points at
which 7, attains its maximum value +ZL. Using the fact that by
Theorem 2.2(a), F has N +/ extremal points the assertion follows.

{(b)=(c). In view of (b) we have
HYU+Y—~H (% Y?=2L. (2.8)

By Theorem 1.1 the implication is proved.

(cj=>(d). By the orthogonality property of #* it follows from
Theorem 1.3 that there is a polynomial % ~ with the given orthogonality
property.

(d)=(a). Again by Theorem 1.3. it follows that there is a polynomial
% ™ such that (2.8) holds. Hence

Iyn=H" UV ~L=H (% V+L
which implies that
TS—H@* UY=L }
COROLLARY 2.5. Ler H*, H™ be polynomials with leading coefficient

one such that

HYH =H and sgn H* = +1 on E,,
put

d
m,f=J kai(x)—i—) for keN,,

J j+1 Jtn
+ +
detMi— mj+l mj+2 m_/+ﬂ+1
e : X .
mE  m* m=
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Then the following propositions are equivalent:

(a) There exists a T-polynomial T on E,.
(b) det M, =0 for u=(N—0H")/2 and j=0,1,..,1-2.
() detM =0 fork=(N—-0H")2andj=0,1,..,1-2.

Proof. In view of Theorem 2.5 the assertion is equivalent to the
following statement: There exists a polynomial #* 1P,y +,,_, on E, with
respect to H*/h if and only if the above given determinants are zero. This
can be demonstrated analogously as in Theorem 2.1(b). ||

Hence Corollary 2.5 gives a simpler condition for the existence of a
T-polynomial than Theorem 2.1. For the calculation of the moments m;
see (5.15) and (5.16).

3. ORTHOGONAL POLYNOMIALS WITH PERIODIC RECURRENCE COEFFICIENTS

In the first part of this section we show that polynomials orthogonal
with respect to ¥z , ., ¥, definite, have periodic recurrence coefficients
if there exists a 7-polynomial 7, on E, and give a representation of the
orthogonal polynomials with the help of the T-polynomial 7. On the
other hand we demonstrate that orthogonal polynomials having recurrence
coefficients of period N are orthogonal on a union of /<< N disjoint inter-
vals E; with respect to a functional ¥ , ., a result which has been given
by Geronimus [ 7] using different methods.

We need the following

Notation. Let R, p,,ebegivenandletveP, ,andueP, ,,, besuch
that at the zeros w, of p,(x) =TTy _, (x —wy)*

v (wy) = (RIS H) (we)  for j=0,.,v,—1,
and that
(R/pu/H)(2) =u(z) +0(z ")
and put
Y, 2) = u(z) pu(2) + 0(2), (3.1)

where we shall omit the indices v resp. R, p,, ¢ if there is no confusion
possible.

Now assume that ¥, , . is definite (see, e.g., [3]); ie., there exists
a unique sequence of polynomials (p,=x"+ ---),.n such that
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P o olxp,)=0 for j=0,.,n—1 and ¥, (x"p,)#0. Then it is well
known that {p,) satisfies a recurrence relation of the form

pn(x)z(x—an)pn—l(x)—_;l'npn~2(x) for I’ZEN, {32>
with
a,eR and Ane 1 €R\{0} for nel,

where p_,(x)=0 and po(x)=1, and we denote as usual by (p’} the
associated polynomials of order j defined by

pI(x)=(x~a,, )PP ()= A, pV ,(x)  for meN, (33)
with p(x)=0 and p§’(x)= 1. Furthermore we put m=n+r—/and
Gm(X)=Y(x) po(x) + Ao (x) PV (x)  for neN,, — (34)

where
Api= Wi, (1) (3.5}

Remark 3.1. (a) Let us recall that by Theorem 1.3, dg,,=n+r—1 for
n > (v+/—-r)2 and that g, L P, , with respect to ¥, . for
nzmax{v, (v+/—r)2}.
{b) Note that ¢,, satisfies the same recurrence relation with respect to
7 as p,.
(¢) Proving Theorem 1.3 we have demonstrated that for ze C\ E,,
| z| sufficiently large,

Vg de)H (RAH)E) g, (1)
pv(z) e kZ _x/ .

(3.6)

The first main result of this section is

THEOREM 3.1. Let Iy be a T-polynomial on E, and let ¥y, , . be definite.
Suppose that (p,) is orthogonal with respect to ¥y, . and satisfies a
recurrence relation of the form (3.2). Furthermore put ng.=
max{0,v+1—N, [(v+I+1—r)2]}.

Then the following propositions hold:

(a) For keN, neNy, n=ny,

20en+n=PnTin + S YUin 15

and
208 sm=qmTen + R0, U4

where T resp. U yy_, are defined in (2.3) resp. (2.4).

640/64/2-2
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(b) The recurrence coefficients of (p,) have period N for nzny, ie.,
for n=ng

Angpny2=%nq2 and ANsns2=lnyoe
(c) If in addition v=r—1—120, then
Pru_1=0,5%y_, and 2on=In+SY%Uy_,,
and

Ayy1 =% and Avi1=K, 4,/2,

where K, is the leading coefficient of p,.

Proof. (a) Since by Theorem L.3 (see Lemma 1.6 and Theorem 1.4 for
details)

R(p,Tn+ Sqm%kal)z —~S(gmTin + an%kzv—l)2
=(Tin—HULy ) Rp:—Sq5) = Linpginys
where g,y€P,_; and at the zeros w; of p
(R(PnTin+ S840 U iy - 1)) W) = e N/ HW N n T + RO, Ui — )W)

part (a) follows from Theorem L.1.

(b) Observing that gq,,., satisfies the same recurrence relation as
Pnio for n=ny we get that for n>n,

Prns2In+ S 2 Uy
= (X~ ) (Prs 1IN+ S 1 Un— 1))~ Py 2 Pn T+ SA Uy _ 1),

which gives in conjunction with (a) that

PNiny2™= (x_“n+2)PN+n+1—/1n+2PN+n

from which the assertion follows.

(c) First let us note that n,=0 and by (3.4), g,_,= Y. Since on the
one hand
P1In+ S8y Uy 1= (x— o ) Iy+SYUy_ )+ A SpUy _,

and on the other hand
Prvi1=(X—an, ) Pn—Ans 1PN 1

the assertion follows with the help of (a). ||

Next we need some general facts on orthogonal polynomials.
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LemMma 3.1. Suppose that (p,),. n, Satisfies a recurrence relation of the
form (3.2). Then ihe following propositions hold for k, neNy:
e+ 1) (k+2)

(a) p (x_{xk+l)pn~l ‘A’ k+2 pnv
(b) For jeN,

(k)

n+y

(n+1+k) (k) (n+1+k) (k) __ (k)

p/iil )pn+1~1 pjn— pn+j ( H }'#+k>

p=n+2
which is the so-called Wronskian formula.
(c) Forje{l,.,n—1}
(k) _ (+k ) (k . (n+k+1 =)
Py nre l-’/n+k+1/1p/’11 ]pn i—1

and this representation is unique for 2j <n; Le., if 2j<n and

lk —_ (k (k)
) u]pn)j—vj‘lpnuj——l’

where u,eP,, v, €P, ,, then

_ j (n k1))
=D and Vit =k 1P

Proof. ({a) This has been given in [4].

(b) This is known and can be demonstrated by induction using the
recurrence relation of p!"*V and p,, ;. ;.

(c) The first assertion follows by induction arguments again using
the recurrence relation of p{* ; and (a).
Concerning the uniqueness of the representation we get that at the
n—jzj zeros of pi,
v, 1= (k)/pfzk)jf 1
which gives in conjunction with the first representation of p the
assertion. f§

LEMMA 3.2. Suppose that (p,) satisfies a recurrence relation of the form
(3.2). Let k, NeN, neN,, and assume that

p(k+1)N+n(x)=a(x)pkN+n(x)_Cp(k-—l)N-\Ln(X)a (3.7}

where ac Py and ceR. Then the following proposition holds:
kN k—DN+n+1
a=pE M — Ay ine 1 PRIV TIED,
AN+n+1
c= I <z
j=k—1)N+n+2

(kN +n+1) _ ((kgl)N+n+1)

PNt Py
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Proof. Put

kN +n

k= [ 4

j=(k—1)N+n+2
Then it follows from Lemma 3.1(b) that

L (k—D)N+n+1) k—1)N+n+1
Kp(k—l)N+n‘pg\(I~l " pkN+n~1—pg\(l—2 " )pkN+n-

Thus we get from (3.7) that

C (k- DN+aEDyp
n

Pl ON+n™= (‘H‘Epjxuz

€ (k=D)Nan+1)

—“IZPNA PiNtn—1-

Since on the other hand by Lemma 3.1(c)

(kN +n)

- EN +n+1
P+ )N+n=DPnN G

pkN+n_'1kN+n+1pN;1 Pin+tn-1

the assertion follows by the uniqueness of the representation. J

CoroLLARY 3.1. Suppose that the assumptions of Theorem 3.1 are
Sulfilled. Then the following propositions hold.

(a) For each ke N, and each n=n,

p(k+2)N+n=g'Np(k+l)N+n_ (L2/4)pkN+n
and

a

Qe+ 2)N+m=INGk+ )N +m — (L2/4) GikN+m-

(b) Foreachnzny+1 resp. n=n,

N+n+1
1 2
pg\’;)~}“N+n+1P§\};j2)=fN resp. 4 H Ai=L%
J=n+2

where the first relation holds also for n=ng if ay 4 pt1= %1 1-
(c) For each n=n,

n+1
H 'ljpv SUy_1=2(PNsn+1Pn~PNinPrs1)
=1

(d) For each nz=n,

n+1

IT 7Sy, Y+ ) =2(p PPy =P 1Py inat):

j=2
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Proof. (a) For keN the assertion follows immediately from the
recurrence relations

Zk+2)N=9~Nzk+l)N_(L2/4)ZcN forall keN, (3.8)
and
%(k+2)N=fN%(k+1)N—(L2/4) Uy forall keN, (3.9

and Theorem 3.1(a).
Using the fact that

Tiw=T x—L*2
we obtain from Theorem 3.1(a) that
2035 40 =T PuT N+ Sqn¥Un_ 1) — (L*2) p,
which proves the assertion for £=0.

(b) From part (a) and Lemma 3.2 it follows that

(N +n)
N

, i
p — AN PN =Ty for nzng,

and that the second relation holds. Since by the periodicity of the recursion

coefficients
(kN + n)

p! =p™ for jikeNgandn=n,+1

part (b) is proved.
(c) With the help of (3.4) we get by simple caiculation that

Prlms 1 —Prs1Gm=A1p(Pap ~ P D)

n+1

=11 4.
j=1

Hence using the representation of S%y_,q,, je{m,m+1}, from
Theorem 3.1(a) we obtain
n+1

H )~ijS%N~1=Pn(2PN+n+1 S 2T By S 0 SV %

=1
which is the assertion.

(d) Using again the representation of S%y_,q;, j=m, m+1, from
Theorem 3.1(a) we get that

S%Nfl(pfxl)Qm “17;(111 (dm+1)
n+1
= 2(P;(11]pN+n“‘pN+n+1pLIll)_ H ’ﬂtj‘TN
J=2

which gives with the help of (3.4) the assertion. §
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Corollary 3.1 could have also been derived directly from [5, Lemma 1,
Corollary 1, Lemma 10, and Theorem 5] in which it has been shown that
orthogonal polynomials with periodic recurrence coefficients satisfy the
relations given in Corollary 3.1 in which 7 is to replace by its representa-
tion in terms of orthogonal polynomials. As we have learned Lemma 3.2
could also be obtained from Lemma 11 and Eq. (V.4) in [5].

COROLLARY 3.2. Suppose that the assumptions of Theorem 3.1 are
Julfilled. Then the following propositions hold for each n>ny+ 1:

a) pW  =Uy_,8m_1, where &, _,, has no zero in int(E,).
( ) (An )
®) P+ Avsns 1PN =Un 1 f -

Proof. (a) Since on one hand, using the representation of g, ,,_; and
4,1 from Theorem 3.1 and using Theorem 1.3

AN +m—1Pn—1"PN+n—19m—1
NAI(RPi—1“S‘]?n_l)=%1v—zpvg(n—1) (3.10)

and on the other hand by simple calculation

IN+m—-1Pn 1~ PNin—19m-1

=20 (PN 2 Pa 1 —PNin1P5)5)

H PP 1, (3.11)

where the last equality follows from relation (10) of [4] the first assertion
of part (a) is proved.

Concerning the second assertion let us assume to the contrary that
&(n—1) has a zero y in int(E)). Since —H >0 on int(E,) it follows from the
second relation of (3.10) that p,(y)=gq,.(y) =0 which implies by the defini-
tion of g,,, taking into account the fact that p, and p{") | have no common
zero, that p,(y)=0 which is a contradiction.

(b) With the help of the first relation of Corollary 3.1(b) we get

[P(n) + lN+n+1P("+l)]2 H%§71=L2+4)“N+n+1175\'f')1’5\7+é)

which gives in conjunction with the second relation of Corollary 3.1(b) and
Lemma 3.1(b) that for n =z ny+ 1

20+ Ansns 1 PREDT— HUY =4y np 1 P pGED

which proves, in view of (a), part (b). |
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In Section 5 we shall demonstrate how to obtain from the relations of
Corollary 3.2 a nonlinear recurrence relation for the recursion coefficients
of p,, if N> 1L

THEOREM 3.2. Suppose that the assumptions of Theorem 3.1 are fulfilled
and let jzno+ 1. Let w, k=1, .., vV, be the zeros of pY | /%y _, and put

e =sgn((p + A0 1 PYT) Uy - 1\/1?)(W§cj))

for k=1, ..,vY). Then

(a) The associated polynomials (p’), . n, are orthogonal with respect

to &I’H,p](v» Uy,

(b)  The polynomials ((2pY), , -~ TP W Un e n, are orthogoral on
E, with respect to W}Vzl/%N—[’sﬂ

Proof. In view of (3.10) and (3.11) we have, putting i=j+r—/,
RP,{1‘S‘L'2_1 =Py g(j~1)=pvp5\{)—l/%N~[>
where at the zeros w{ of pi /%y _,

(Rp;_ )W) = — 5(’)(\/—614 wi),

6 {—1, +1}. Thus, by Theorem L5, it remains only to demonstrate
that —8¢ =¢\. Since by Theorem 1.5(c) and Theorem L.3

g DW= D(SHp)w?)  forall neN,, (3.12)

where m=n+/, and since by the first relation of Theorem 3.1(a)

Uy 190 =2p, . — Ty pY for neN,

and moreover, using Corollary 3.1(b),

Uy q(])"P(1)+)N+1+1PN+U

the assertion follows by (3.12). |

Remark 3.2. Corollary 3.2 and Theorem 3.2 hold also for m=n, if
Uy tng+1 = Xng1-
Remark 3.3. Theorem 3.1 as.o. could also be extended to the most

general case where Y. ,. is not necessarily definite using the fact
(see [16]) that for given R, p, ¢ there is a unique sequence of poly-
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nomials p, =x"+ ---with ¥, ,.(xp,)=0 for j=0,.,i,,,—2 and
Vg p el Xnt” 'p, ) #0 satisfying a recurrence relation of the form

Pi,=d;pi_ — )“inpi,,,zb
,and 4, e R\ {0}.

Next let us demonstrate that the converse of Theorem 3.1(b) holds also.

where d, P

iy — dy

LemMA 3.3. Let a,€R, 4,,.,eR\{0}, for neN and suppose that
AN tn+1™Onyy and ANtn+1 = nit Jor nzno+1,  (3.13)

where N, noeN. Let (p,) be the polynomials generated by the recurrence
coefficients (a,,) and (4, ,.,) and put

N+ny+1
- 1 2 2. __
T =P — Ay iniaph?Y and  L*:=4 J] A,
J=ng+2

Furthermore let us assume that L* >0, that Iy can be represented in the
form
T Mx)=H(x) %> ;(x)+ L% (3.14)

where H(x)=TT7_ ,(x—a;) with a;<a,< -+ <ay, Uny_,€Py_,, and that
pYe D) has simple zeros at the zeros of Uy _,. Then the following propositions
hold.
(a) Iy is a T-polynomial on E,;:= \J;_, [ay_,,ay] and Uy_, has
N —1 simple zeros in int(E)).
(0) Tn=p% —Anine1p%TD for each n=ny+ 1.
(c) Foreachnzng+1

pg\r’l)-lz%N—lgA(n—l)n

Where §,_ 1, has no zero in int(E)).
(d) For each nzny+2

n

pnpN+n1_pn—le+n:< H ’1j>(pn0+1pN+no_pngpN+n0+1)

j=ng+2

ANA Prg s 1 PNt ng— Prg PN 4 ng+ 1 VaNIshes at the zeros of Un_,.

(e) If in addition oy, , . =0, , then (b) and (c) hold also for
n=n0.

Proof. (a)Follows immediately from (2.1) and Corollary 2.2(a).
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{b) See, e.g., [5, Lemma 1]. The assertion could also be proved with
the help of Lemma 3.1(c) and (b) using relation (3.13).

(c} With the help of (b), relation (3.14), and Lemma 3.2(b)} we get
that for n 2z ng+ 1

(p(n)+'lN+n+1p(n+1))2 H%ili
—H%Q 1+4)~N+n+1p%’)p%tn
=4y e DN PG (3.15)

In view of (a), %y _, has N—1 simple zeros in int(£,). Thus we get from
(3 15) by induction arguments that p{" , has simple zeros at the zeros of

Uy, for each n=zny+ 1. Since —H >0 on int(E;) we obtain from (3.15)
that the zeros of %, _, are the only zeros of p{?’ |, n=ny+1, lying in
int(E,), which proves (c).

{d) The first relation follows by induction.
Concerning the second assertion it follows with the help of the relations
(see Lemma 3.1(c))

(n+1) + 2y
pN+n+] pNn 1+jpn+1 )n+2pNn 2+1Pn

for j=0, 1, that at the zeros of %, _,, which are by (¢) the common zeros

of p* Y and pr+?,

pn+le+n'—pnpN+n+1_’ pnpn+1(p$:/£+l)+) +2 p(n+2))

Since by (3.15) and (c) the last expression vanishes at the zeros of %, _,
part (d}) is proved.

{(e) Since, by assumption,

+1 +2

p(;]zo )_,_/LN+n0+2p%(L )
—_ 1 1 2
(JC'—ﬁ)Crl()1L1)1'7(n0+ ) — )“N+n0+1p("0+ ) Ano+zP§~70+ )

(b) holds also for n=n,. Observing that (3.15) holds also for n=n,, {c)
follows. §

Remark 3.4. If the recurrence coefficients (x,), (4,,.,) satisfy the
relations given in (3.13) and if 4,, >0 for each n=zny,+ 1, then 7, :=
P — Ay g g2 PS5 satisfies relation (3.14) and p$) =% _ 16w 1
for nzn,+1, where g, _;, has exactly one zero in each interval
[ay,as 1], j=1,..,1—1. This fact is due to Geronimus [7] (see [5,
Lemma 2]).



146 FRANZ PEHERSTORFER

THEOREM 3.3. Suppose that the assumptions of Lemma 3.3 are fulfilled
and let Ty, Uy _,, H, and E, be defined as in Lemma 3.3. Furthermore put

p(x):(pno+1pN+no_pnopN+no+1)/%N71' {316}
and set

2
8k=sgn[<M—fN>/%N_,\/l—1](wk) for k=1,.,v* (317
no

where Wi, ..., W, are the zeros of p. Then

(a) The polynomials (p,),.~ generated by the given periodic
recurrence coefficients (a,) and (A, ,,) are orthogonal to P, | on E, with
respect to ¥y , .

(b) The polynomials ((2pnon— FnwVn)/%n_)new, are orthogonal to
P, on E with respect to ¥, ,.

Proof. ad (a) and (b). By (3.14) and Lemma 3.3(b) it follows using the
relation (see Lemma 3.1(c))

(n+1)

pN+n:pg\r;}pn_}“n+1pN71 Prn-1

that for n=zny+ 1

(2PN vn—TnPa)’ —H(Uy_1p,)
= —4)“N+n+1psxrfljll)pn~}pN+n+4}¥N+n+1pn(p(Nni21)pN+n+L2pn)-
Since by Lemma 3.1(b)
N+4n
p%+f)pn+N1—p%’fé)pN+n=( I1 ij)pn
=R+ 2
we get with the help of the periodicity of the As, Lemma 3.3(d) and the
definition of p that for n=zny+ 1
n+1
[(Coyea=Tup i F—Hp=(4 T1 4]0 00t (18
J=ny+2
From (3.18) we get by simple calculation that at the zeros w, of p
2
(*p?—%) (we) =2 /HOwi) Uy (9, (3.19)
where ¢{” e { —1, +1}. Since by Lemma 3.3(d) at the zeros w, of p

(3—”——) (wk)=(p—”f—") (w)  for n>n,,
Pno Dn
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we obtain that

8;:1) = 8;:‘0) fOI' nz= Hg.

147

(3.20)

Applying Theorem I.1 to (3.18) and (3.19) the assertion is proved. §

Remark 3.5. Suppose that the assumptions of Theorem 3.3 are fulfilled

and let ¢, be defined as in (3.17). Then, ke {1, .., v¥},

2
g=+1 if and only if By ml?e) <L
pno(wk)
and
2
g=—1 if and only if 2P (%) > L.
pno(wk)

Proof. From Corollary 2.2(a) and (b) we obtain that
sgn I =sgn %N,,\/—I;' on R\E,
and hence by (2.1)
{ I+ H¥U_ | >L on R\FE,
and
| Tn—~/HU_,| <L  onR\E,.
Since, by (3.19),

2PN+n0(Wk)

=(In+epy/ HUy - )W)
pno(wk)

the assertion is proved. §

(3.21)

Using different methods Theorem 3.3(a) has been given by Geronimus
[7] (see also [5]) for the (probably most important) case that 4,, ,eR™*
for ne N. Instead of condition (3.17) Geronimus has given condition (3.21).
Note that 4,,,€R™ for ne N implies by Favard’s Theorem that ¥, ,, is

positive definite and thus is of the form

P dp)= | p0) L)

where sgnp,= —sgnh on int(E,) and either u,=0 or

2/ Hw,)/p(wi) > 0.

dx + }: i P(Wie)s

Uy =
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THEOREM 3.4. Let Iy be a T-polynomial on E, and let o, =y, and
Ay 1=Anins1>0 for neN be the periodic recurrence coefficients of those
polynomials which are orthogonal on E, with respect to ¥y, 4y .
Furthermore let us put for arbitrary Zye€ (0, Ay, + A\ {Ay}

IN+1:}'N+1+AN'—IN and Lz(IN)=IN+IINL2/'1N+IAN~

Then the following propositions hold:

(a) The polynomials (}77) generated by the periodic recurrence coef-
TCIENLS 01y, s Upys Any s AN 1> Ans Ansi, @re orthogonal on the N disjoint
N +

intervals E(L(IN)) = {XER | ()l <L(IN)} UL [az, 1(An), a(Ay)]
with respect to ¥y ., =, where Hx)=TT%, (x— a( ~)) and

P 2(wy) ZN+1

§k:sgn(pN N zN> for k=1,.,N—1  (322)

where w, denotes the N — 1 simple zeros of py_ .-

(b) The polynomials (2py ., — TnPu)new are orthogonal to Py, .,
on E(L(Zy)) with respect to ¥ where & is defined in (3.22).

PN-1,8>

(€) If Iy>(<) Ay then Yo pn e and ¥, | - have no (have a) point
measure at all zeros of Uy_, and have no (have a) point measure at a zero
Wi of Py 1/Un_1 i Vi py_yun_,.c has no (has a) point measure at w;.

Proof. (a) and (b). In view of the assumption

j3 4 j—P%) 1 forj=0,. —1 and IN+IN+1=’1N+AN+1
(3.23)

which implies that

~(1) 1
pN_1N+1P5V)-2_pN_’lN+1pEV)Hz=g-N’

where the last equality follows from Corollary 3.1(b). Since L2(1,,) < L? we
deduce that

2N
73— LT =T x—aTy) =: &,
i=1
where a,(Ay) <ar(Zy) < -+ <an(@y).
Applying Theorem 3.3 we get the orthogonality property given in (a)
and (b) with

8=l (B + Tny 1 BL ) SH1(w0),
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where w; denotes the zeros of p_,=p,_,. Since, by the first relation of
(3.23) and the recurrence relation of #,,

L _ s
(By+ w1 PY )0 = ~Ty pi o (wi) Bg)i:z;m An 1}

and since, by Remark 3.4, w.e [an(Zy), @z, (Fn)] for k=1, .,71—1,
relation (3.22) follows by the interlacing property of the zeros of p}’ , and
Pn-, and from (1.2).

(c) First let us note that
I /A< (>) Ayari/Ay  HE Tu>(<) Ay (3.24)

Taking into consideration the fact that

¢, =sgn [PN~2(W,',() _ Ans 1}

P%Lz(WJK) A

where w; , k=1, .., [—1, denotes the zeros of py_ /%y, {c) is proved for
the zeros of py_ /Un_,

Concerning the zeros u,, x=1,.,N—/ of %,_, which are by
Remark 3.4 zeros of p,_; too, we observe that at u,

D=3 =(py—Ane1 PN ) =T 40 PN )+ A pv— 205
where we used the fact that by Lemma 3.1(b) at the zeros of py_,
~PnPN =LAy 1, (3.25)
which gives
P%lz(”x): L2454
Inserting this in (3.25) and using the recurrence relation of p, we have
(Pv—2/PS) D))= Ay i/An

which proves in view of (3.24) and (3.22) the assertion. §

The following remark gives another representation of orthogonal poly-
nomials with periodic recurrence coefficients (see {27 and also the methods
used in [6, Theorem 77).

Remark 3.6. Suppose that (p,) satisfy (3.2) and that the recurrence
coefficients of (p,) satisfy

o, =0n,n and Ans1=AninrforneN
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and set
N+1

Tn=Pn—Ani1 PN > and L4 = H 4j.

j=2

Then for 0<n< N—1 and keN,

/} N+n+1 /\~
pkN+,,=ank(fN)+( 1 A,)p%iéinvk_l(%) (326

J=N+1

and for 0<Kn<N—1 and ke N\ {1}

2Dinven— INPhk— )N +n=PikNn— (L2/4)p(k\2)N+n (3.27]
and
n+1
2pN+n—3°an=pN+n+<1'[ /IN+j>p%j§>,,. (328
i=1

Proof. Relation (3.26) has been given in [2] and can be proved with
the help of Lemma 3.1(c) and 3.1(b). Using (3.26) and

P SN L SN L
UdIn)=IwUi_1(In)— (L2/4) Ue—2(In)
we obtain (3.27) and (3.28). |

ExaMpLE, Let E;=[—1, +1]. Then for each NeN, J,=T,isa T
polynomial on [ —1, +1] and %,_, = U, _,. Furthermore (p,=U,), . is
orthogonal on [—1, +1] with respect to ./1—x%dx, «,=0, and
Ani1=1/4for neN, and L?=4"~+1,

Now let (5,) be the polynomials generated by the periodic recurrence
coefficients o, =0, = --- =ay=0, Ay=---=Ay_=1/4, Iy, Iy, =
1/2—7y, where Zye(1/4, 1/2). Putting L2(Ay)=2"2"*+37,(1=27,) it
follows from Theorem 3.4 that the polynomials (j,) are orthogonal on
E(L(Zy)) := {x:| Tu(x)| < L(Zy)} with respect to w(x) :=/L*(1y) — T/
FUn—1(x)| dx.

In view of Remark 3.6 the polynomials (7,) can be represented in the
form, keN,, 0<ngN-1
N A s
Pinen=U, Uk(%v)+4in1N+lUN72—n Ue_1(In),

where 9 = T,/L(Zy) and as usual U_, =0.
If 7ye(0, 1/4) then the polynomials (5,) are orthogonal on E(L(%,))

with respect to the distribution function w(x) dx+ ¥ e d(x —wy),
where w, are the zeros of Uy_, and ke {1, .., N—-1},

(=D JTAw) = L2(Ty)  (1—wd)J/1—8T5(1—21,)
= 0N~1(Wk) B .
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The above example (put Ay=c/2(1+¢), ceR*) is due to Ismail
[8, Sect. 2] who derived it by direct methods.

Furthermore it follows by Theorem 3.4, Remark 3.6, and by simple
calculations that the polynomials

GN+n= 0nTN+2'47nIN+1Z7N42»~n

and A /\~ 3 /\~
Geven="U, T T +4 Ty Uy s u T (),

where 0<n<N—1 and keN\{1}, are orthogonal on E(L(Z)) with
respect to 1)</ L*(Ay) — T2 | Un_ (x)| dx if Xy e (0, 1/4).

In this section we have demonstrated that the recurrence coefficients of
the polynomials orthogonal with respect to ¥ , . are periodic if and only
if there exists a T-polynomial on E;. Since we shall show in a forthcoming
paper that for a given set of disjoint intervals £, and arbitrary ee R™ there
exists a set of disjoint intervals £, such that A(E)\E,)<e, 1 denotes the
Lebesgue measure, and that there exists a T-polynomial on E,, we get in
a simple way that the recurrence coefficients of polynomials orthogonal
with respect to ¥ , , are quasi-periodic in the limit. As already mentioned
in the Introduction this quasi-periodic behaviour of the recurrence
coefficients has been discovered by A. Magnus [ 107 using Abel functions.

4. RELATIONS BETWEEN THE RECURRENCE COEFFICIENTS
OF THE POLYNOMIALS ORTHOGONAL WITH RESPECT TO
VYoo RESP. ¥p |
In this section we show how the recurrence coefficients of the above men-
tioned orthogonal polynomials are related. In particular it is demonstrated
that the recurrence coefficients of those polynomials which are orthogonal
on E, with respect to a distribution of the form ./ — R(x)/S(x) dx, where
r=1—1(+1)and s=/+1 (/- 1), are symmetric periodic if and only if
there exists a 7-polynomial on E,. Polynomials orthogonal for such
distributions also play an important role in L'-approximation because the
L'-minimal polynomial on E, can be represented with the help of such
polynomials (see [13, Theorem 6]).

THEOREM 4.1. Let F be a T-polynomial on E, and let ¥y, . be definite.
(p,...) denotes the polynomials which are orthogonal with respect to ¥g, .
and (a,.), (A,,,.) denote the recurrence coefficients of (p,.). Then the
following propositions hold for ke N:

(a) Forv+Il—(r+1)<2j<2kN+v+Ii—(r+1)

pkl’\’+1+v;(j+r+1), —e = (g-lchj.s—S%kN71Qi,c)/K;.s
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and
qu+1+v—(i+r+1), —e= (Rd]lkalpj,s_%Nqi,s)/Kj,w
Where l:]+r”_l, Kisf?:A Hf;ﬁ /l‘u,sv and pV:Axv+
(b) For (v+Il—r—1)2<j<min{kN—2+v+Il—r,kN—-2+
(v+1—r—1)/2}
Ny b= (rlar), —e— %426
j’kN+v+1‘(j+l+r), —e=/1j+3,a~
Proof. (a) Since by Lemma 2.1
'71%N_H%13N—/:L13N
and, by Theorem 1.3,
RP]?,E_SC]?,E=Pvg(j)
for 2/>v+1—r—1, where g ,eP,_, and
(Rp;.)(wi) = e(/H g,.)(w,)
at the zeros w, of p,, we get (for details see Lemma 1.6) that

R(j;{NPj,s— S%kN-lqz',a)z - S(R%kN—lpj,a - g;chi,a)z = Linv 8j)»

where at the zeros w; of p,

R(Fn Pje— SUjen— Iqi,s)(wk) = gk(\/?I(R%kN—lpj,s - %N(Ji,s))(wk)

and that the polynomial Fiy p; . — S%n_19;. 165D RUin—1Pjc— Tin 45,2 18
of degree kN —j+ v+ 0g; — r resp. kN — [—j+v+0g; with leading coef-
ficient K;,/2, where K, is the leading coefficient of p,g;; hence by
Theorem 1.3, K, /2= AT]." .. Part (a) follows now from Theorem L1.

=1 M6
(b) Since p;, and g, satisfy the same recurrence relation we get in
conjunction with (a) that for jeN, with v+/+3—r<2(j+2)<
2kN+v+I1—1and kN+I+v—(j+r+3)=0
Kj+2,epkN+l+v—(j+r+3), — (x‘““j+2,s) Kj+1,epkN+l+v—(j+r+2), —

- j+2,eKj,£pkN+l+v—(j+r+1), —&"

Using the fact that

Kj+2,a= j+3,eKj+ 1,8
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we obtain, dividing the above relation by X, , , that

PiNvitv—(rr+1), —
=X =0 0 PNty Grrt2)y —o ™ e 3 e PAN 414 v— (e rt 3), —s
which proves part (b). §

CoRrROLLARY 4.1. Suppose that the assumptions of Theorem 4.1 are
Sfulfilled and let R=H and v=1—1. Then

Uny_j e =0, for j=1,..,N—1, and Oy =0y gy

and
ANg1j e=hy, for j=2,.,N-—1,

AN,wsz/LNﬁ—l,ez’ and )“N+1,/£=}'N,e'

Proof. Putting k=1 and k=2 in Theorem 4.1(b) and using the fact
that by Theorem 3.1(c), @y, _,=a, _, the corollary follows. §

COROLLARY 4.2. Suppose that the assumptions of Theorem 4.1 are
Sulfilled and let r =1~ 1 and p=1. Then

Unio_, =0  for j=1,.,N+1
)"N+2—j:ij+1 for ]=2, ...,N"]

and
Anat=Ani2=4As/2.

Proof. 1n view of Theorem 4.1(b), since v =0 and thus there is no point
measure, it remains only to show that

Upyo ;=0 for j=1,2 and Anio=An,1=4,/2.

By Corollary 2.1 we have that
Pnv=9Ix. (4.1)

Using the representation of p,_; and p,_, given in Theorem 4.1(a) and
inserting these expressions in the recurrence relation of p = Z,, we obtain

that
[ (1112 a1 e (0 112 1

=5, | =) (0~ ’ﬁa)qz(xﬂ (42)

=1

640/64/2-3
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Since I, #0 at the zeros of S%, _, it follows that the second term of the
left side of (4.2) vanishes identically which implies that oy =a,.

The remaining relations are obtained similarily with the help of the
recurrence telation of p, ., using the representation of py.,;, py, and
Pn—1 given in Theorem 3.1(a), (4.1), and Theorem 4.1(a), respectively. |l

As already mentioned in Remark 2.1 polynomials orthogonal with

respect to / — R(x)/S(x) dx can also be fitted into that class of orthogonal
polynomials investigated in [6]. But, to the best of our knowledge,
Corollary 4.1, ie., the symmetric periodic behaviour of the recurrence
coefficients, can not be derived from the results of [6].

Next let us demonstrate that the converse of Corollary 4.2 holds also.
We need

LemMma 4.1. Let mg,m,;, KeN,, and suppose that my+1<m, <K
Then

U1 ;=0  for j=my+1,.,m,
AKH_].:I]. for j=mo+2,..,m,
if and only if p™ =p{* =7 for j=1, .., m; —my.
Proof. Using the relations
B = (X = ) BT~ Ry g BV
and, see Lemma 3.1(a),

K—mo—j) _ K+1l—mo—j K+2—mg—j
P(- o J)_(x“aK+1—mofj)pj('~1 o j)—/lK)rz—mo—jP]('_z o))

the assertion follows by induction. ||

THEOREM 4.2. Let a,eR, 4,,,eR™ for neN, and suppose that for
keN

Upn 45 ==y oy for j=1,.,N+1
A‘kN-(—j:/lj:)'N-F?a—j for j=3,...,N
and
)ka+1=ikN+2=j-2/27

where N eN. Furthermore let p,, neN, denote that polynomials which are
generated by the recurrence coefficients o, and 1, , ,, ne N. Put

175\1/)-12 n_iR and Priri—Ani1Pv—1=%Un_ .S, (4.3)
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where YUy _,, R, S are polynomials with leading coefficient one and R and 5
have no common zero. Then the following propositions hold.

(@) H:=RS=[TL (x—a), where a,<a,< --- <ay, and either
R(ay) =0 or R(ay,,)=0 for j=1,.,[—1.

(b} The polynomials p,, ne N, are orthogonal on E,= U,[-=1 Lay 1,451
with respect to the weight function ./ — R/S.

(c) The polynomials p), neN, are orthogonal on E,=\)!_, [a,; ,a;]
with respect to the weight function ./ —S/R.

Proof. First let us note that

O pns 1 =0y for n=1 and ANani1=Ayeq for n>=2.

Further let ,, L, and p be defined as in Lemma 3.3 and Theorem 3.3.
Using the relations

Ay =0 and Ay=20p 1 =24y, (4.4)
and (Lemma 4.1)
Py L =p5), (4.5)
we get with the help of Lemma 3.3(e) and (b) that

g—N=P§\})*iN+2P§312: (X~a1)p$v‘ll - ~2P5\3)_z =Dn- (4.6)

Since by Lemma 3.1(b)

n+1

L2/2= H )~1=P%)pN_PN+1p§\})~1

j=2
=i (PN  Pvo =N,
we derive with the help of (4.4), (4.5), and (4.6) that

2

pN_LZ:p%ll(pN+l_}'N-i-le—l) (4.7)
and thus, by (4.6) and (4.3), that
ffV—Lz-——HOZl?V_,.

Now let x; <x,< --- <x, be the zeros of p,. Then, using well known
interlacing properties of the zeros of orthogonal polynomials,

Sg(Py 1 —Ans 1 Py ) (X)) = —2Ayisgnpy (X)) =(— I)NH‘Z‘
and
Sgnpgél 1(xi) = (‘”Nwi
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for i=1, .., N from which it follows that there is exactly one zero of p{}) |
and p,\,+1 Ant1Pwn_qin each interval (x;, x,, ), i=1, .., N, which proves
part (a).

From (3.16) we get by simple calculation in conjunction with (4.4) that

pUy_ 1= —Anii(Pvi1—Ani1PN—1)

which implies by (4.7) that each zero of p is a zero of H. Thus we get from
Theorem 3.3 that (p,) is orthogonal with respect to p'}) | /%y _ ;b dx which
is the assertion for (p,). The orthogonality property of (p'’) follows from
Theorem 1.3 combined with Theorem 1.1 observing that by Theorem L.1(d),

Am(x)=—p32 1 (x). 1

5. RECURRENCE RELATION FOR THE RECURRENCE COEFFICIENTS

In this section we demonstrate how to get in a simple way (compared to
[19]) recurrence relations for the recurrence coefficients if there exists a
T-polynomial 7, on E,;, where N>/, and thus by Theorem 3.1, the period
N of the recurrence coefficients is greater than the number / of the disjoint
intervals. Assuming that the recurrence coefficients of the orthogonal poly-
nomials are periodic Turchi ef al. [19], using completely different methods,
got the same recurrence laws for the recurrence coefficients as it should be
in view of Theorem 3.3.

Notation. Let (p,) be a sequence of orthogonal polynomials and let
(2x), (A%, 1) be the recurrence coefficients of (p,) with the property that
Ary 1 #0 for keN. We set for k, neN,

k
pP(x)=Y AFx*I, where AfFT =1 (5.1)

j=0

Then we get from the recurrence relations (3.3) resp. Lemma 3.1(a) that for
nelNg, keN,

AGM = 4 g gl g gG2m for oK,
(5.2)
resp.
A(kn) A(k Ln+1) n+1A(k~1n+1) y +2AJ('k_—22,n+2] for _]=1, ...,k,
(5.3)
where

AFm =0  for je{lk+1L,k+2,.,}u{—1}
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Now let us demonstrate how to get the recurrence relations. Suppose
that there exists a T-polynomial J,, N>/ on £, and that Y., . is
definite. Let (p,) be orthogonal with respect to ¥ , . having recurrence
coefficients («,,), (1, ). We put

N N1
Tnlx)= Z zjNij and Uy (x)= Z quN_lfja
j=0

j=0
and for n = n,

I—1

/
g(n)(x): Z Gj(_n)xlfl—j and f‘(n+1)(x)= Z Fj(_n+1)x1—J’

Ji=0 i=0

where %y_; is defined in (2.1) and g, and ﬁn +1) are defined in
Corollary 3.2. Observing that by Corollary 3.1(b) for n>n,

1 2 2
P(n+ )+'{N+n+2pn+ )"JN+24N+n+2pn+ )

we get from Corollary 3.1(b) resp. Corollary 3.2 that the following
fundamental relations hold for n>n,

=AM ANFED for j=1,., N, (5.4)

)"N+n+2

J
Y ou G = AN for =1, N—1 (5.5)
=0

J
Z F("+l>~1’ +2AN+’1+2A(N 2n+2) for j=1,., N, (5.6)
=0

where G :=0 and FO'HY := 0 for pu>1.
Since by (5.3) and (5.4) for n=n,
A(N 1n+1)___L_ +aN+n+1A(N 1n+1)+;~N+n+1A;]X§2'n+l)

F AN n g ARG 202 for j=1,.,N—1, (57}
the expression on the right side of (5.5) and (5.6} can be expressed in terms
of t,’s and u,’s and in terms of the recurrence coefficients (o), (4,4} by
using successively (5.7) and the following relations which can be derived
from (5.2) resp. (5.3).

AA('N72,n+1)=14(.N--1,n—i—1)_+_“N+ A(N;Z’n+1)+lN+ A(N53,n+l) (58}
J J nttj— netj—-

and

A(N—kfl,n+k+1)__A(N—k,n+k)+a

A(N k—Ln+k+1)
J — 4y nAk+ 1

+in+k+2A( —k—2,n+k+2) (59)
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ke {0, .., N—1}, in conjunction with

Xt bt 1 =Nt k+1 and Amtkt2=ANinvk+2 for nzn,.

(5.10)

Thus we obtain from the first /—1 resp. / equations of (5.5) resp. (5.6)
the coefficients G resp. FI"*" of g, resp. f(,, 1) in terms of 7,’s and u,’s
and in terms of the recurrence coefficients. Finally we get from the /th
equation of (5.5) resp. (5.6) two (nonlinear) recurrence relations for the
recurrence coefficients. Further relations for the recurrence coefficients can
be obtained by considering (5.5) resp. (5.6) for j>1 resp. j>1+ 1.

ExaMpLES. Suppose that there exists a T-polynomial 9, on E, and that
¥ .o 15 definite. Let (p,) be orthogonal with respect to ¥, , on E,; and
let («,), (4,,,) be the recurrence coefficients of (p,) Furthermore let #, be
defined as in Theorem 3.1. Then the recurrence coefficients have period N,
by Theorem 3.1, and satisfy the following recurrence relations:

(a) I=2.Put C;=u,—1,. Then
Anyat Apprtoni(a,—Ch)
=(uy—To) +u (1, —uy) =:C, for nz=zny+1 (5.11)
2y ya(tpiata,  —Cy)
=uy— T3+ u(Ty— )+ (U —ui)(t;—u) =:C;  for nzny+ 1.
(5.12)
If oy oy s 1 =041, then (5.12) holds also for n=n,.
(b) [=3.Let C, C,, and C; be defined as above. Then
Ay oty 2+ 200, — Co) + Ay (0, + 20, — Cy)
‘o, Loy i(a, 1 —C)—C1=C,4 for nzny+2 (5.13)
and
2hni2lhniztAniat Anir 10, —C)
F oot — Cy)F o, 00, — ]
=1y — Ty +10,(13 — 03) + (; — u3)(t; — u3)
— [us —upuy —uy(u,—u)] C, =: C,4 (5.14)

for n>ny+ 1, where (5.13) holds also for n=no+ 1, if @,y 1 =i pgrs-
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Proof. (a)From (5.5) resp. (5.6) it follows immediately that
uz_u%=A(2N71,n+1)_ulA(lN—1,n+1)
resp.
Uy + (U —ul) F D — iy =15 — 1,1y + 225 4y oAV 277D — )

which gives with the help of (5.7), (5.9), and (5.10} the assertion.

{(b) From (5.5) resp. (5.6) it follows by straightforward calculation
that

Uy —u Uy + ul(”%_uz)

=A’(3N—1,n+1)_ulA(szl,n+1)+(uﬁ_uz)A(lN—l,rhrl)
resp.
. N—2n+2 N-2,n+2 2
Co=2n i 2[ATT 72742 —u A " — (u, —ui)]

from which with the help of (5.7), (5.8), (5.9), and (5.10) the assertion
follows. §

Note that the recurrence relations do not depend on p,. In order to
calculate those recurrence coefficients which are not determined by the
recurrence relations for the recurrence coefficients, ie., those of low index,
one has to calculate the “first” moments

m]('R’P,S) = TR,p,e(xj)‘

(If p=1and e=(1, 1, .., 1) we write m{®).) This can be done with the help
of relations (3.6) and (3.1) or by the following method which is often
simpler.

Let ueP,_, be such that

(R/\/H—u)(z)=0(z"").

Observing that by (3.6)

L— R(x) dx . z)= (R JH)z) (5.15)

Lz —x h(x)

and that for sufficiently large | z|

yz)i= (RISEND) =" Y, dz
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satisfies the differential equation
2HY' =y(R'S— S'R) (5.16)

we get, equating the coefficients in (5.16), the coefficients of u and the
moments m®' =d, _,, ., ;, jeN.
Now let us suppose that all zeros of p, are simple and let us put

v

p(x)=[1 (x—w)= T B

k=1 j=
and for k=1, .., v,

v—1

Y B, x’.
=0

_px)
- pv,k('x) - -

Wy —Xx
Then the moments m{®#®, j=0, ..., v—1, can be calculated by the system
of linear equations

v—1

Y B m®Bed =g (RIH)we) —u(we)  for k=1,.,v, (5.17)
j=0
and the moments of higher index with the help of the relation
Y Bm%ed=m®  for keN,, (5.18)
j=0

where (5.17) resp. (5.18) are obtained by considering ¥y, .(—p. ) and
using (5.15) resp. by considering ¥ . .(x*p,).
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